TSTP Solution File: NLP264^7 by cvc5---1.0.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cvc5---1.0.5
% Problem  : NLP264^7 : TPTP v8.1.2. Released v5.5.0.
% Transfm  : none
% Format   : tptp
% Command  : do_cvc5 %s %d

% Computer : n007.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 09:41:02 EDT 2023

% Result   : Theorem 0.21s 0.57s
% Output   : Proof 0.21s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.06/0.13  % Problem    : NLP264^7 : TPTP v8.1.2. Released v5.5.0.
% 0.06/0.14  % Command    : do_cvc5 %s %d
% 0.15/0.35  % Computer : n007.cluster.edu
% 0.15/0.35  % Model    : x86_64 x86_64
% 0.15/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.15/0.35  % Memory   : 8042.1875MB
% 0.15/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.15/0.35  % CPULimit   : 300
% 0.15/0.35  % WCLimit    : 300
% 0.15/0.35  % DateTime   : Thu Aug 24 10:31:40 EDT 2023
% 0.15/0.36  % CPUTime    : 
% 0.21/0.50  %----Proving TH0
% 0.21/0.50  %------------------------------------------------------------------------------
% 0.21/0.50  % File     : NLP264^7 : TPTP v8.1.2. Released v5.5.0.
% 0.21/0.50  % Domain   : Natural Language Processing
% 0.21/0.50  % Problem  : Belief Change in man-machine-dialogues
% 0.21/0.50  % Version  : [Ben12] axioms.
% 0.21/0.50  % English  :
% 0.21/0.50  
% 0.21/0.50  % Refs     : [FH+98] Farinas del Cerro et al. (1998), Belief Reconstruction
% 0.21/0.50  %          : [Ben12] Benzmueller (2012), Email to Geoff Sutcliffe
% 0.21/0.50  % Source   : [Ben12]
% 0.21/0.50  % Names    : s4-cumul-APM001+1 [Ben12]
% 0.21/0.50  
% 0.21/0.50  % Status   : Theorem
% 0.21/0.50  % Rating   : 0.15 v8.1.0, 0.09 v7.5.0, 0.00 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.00 v6.1.0, 0.14 v5.5.0
% 0.21/0.50  % Syntax   : Number of formulae    :   92 (  38 unt;  44 typ;  32 def)
% 0.21/0.50  %            Number of atoms       :  146 (  36 equ;   0 cnn)
% 0.21/0.50  %            Maximal formula atoms :    7 (   3 avg)
% 0.21/0.50  %            Number of connectives :  197 (   5   ~;   5   |;   9   &; 168   @)
% 0.21/0.50  %                                         (   0 <=>;  10  =>;   0  <=;   0 <~>)
% 0.21/0.50  %            Maximal formula depth :    8 (   2 avg)
% 0.21/0.50  %            Number of types       :    3 (   1 usr)
% 0.21/0.50  %            Number of type conns  :  186 ( 186   >;   0   *;   0   +;   0  <<)
% 0.21/0.50  %            Number of symbols     :   51 (  49 usr;  12 con; 0-3 aty)
% 0.21/0.50  %            Number of variables   :   95 (  49   ^;  39   !;   7   ?;  95   :)
% 0.21/0.50  % SPC      : TH0_THM_EQU_NAR
% 0.21/0.50  
% 0.21/0.50  % Comments : 
% 0.21/0.50  %------------------------------------------------------------------------------
% 0.21/0.50  %----Include axioms for Modal logic S4 under cumulative domains
% 0.21/0.50  %------------------------------------------------------------------------------
% 0.21/0.50  %----Declaration of additional base type mu
% 0.21/0.50  thf(mu_type,type,
% 0.21/0.50      mu: $tType ).
% 0.21/0.50  
% 0.21/0.50  %----Equality
% 0.21/0.50  thf(qmltpeq_type,type,
% 0.21/0.50      qmltpeq: mu > mu > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  % originale Definition
% 0.21/0.50  %thf(qmltpeq,definition,
% 0.21/0.50  %    ( qmltpeq
% 0.21/0.50  %    = ( ^ [X: mu,Y: mu,W: $i] : ( X = Y ) ) )).
% 0.21/0.50  
% 0.21/0.50  % erweiterte Leibnitz-Definition
% 0.21/0.50  %thf(qmltpeq,definition,
% 0.21/0.50  % ( qmltpeq
% 0.21/0.50  % = ( ^ [X: mu,Y: mu,W: $i] : (![P: mu > $i > $o]: ( (P @ X @ W) <=> (P @ Y @ W) ) ) ) )).
% 0.21/0.50  
% 0.21/0.50  %  Leibnitz-Definition
% 0.21/0.50  %thf(qmltpeq,definition,
% 0.21/0.50  % ( qmltpeq
% 0.21/0.50  %  = ( ^ [X: mu,Y: mu,W: $i] : (! [P: mu > $o]: ( (P @ X) <=> (P @ Y) ) ) ) )).
% 0.21/0.50  
% 0.21/0.50  thf(meq_prop_type,type,
% 0.21/0.50      meq_prop: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(meq_prop,definition,
% 0.21/0.50      ( meq_prop
% 0.21/0.50      = ( ^ [X: $i > $o,Y: $i > $o,W: $i] :
% 0.21/0.50            ( ( X @ W )
% 0.21/0.50            = ( Y @ W ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  %----Modal operators not, or, box, Pi 
% 0.21/0.50  thf(mnot_type,type,
% 0.21/0.50      mnot: ( $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mnot,definition,
% 0.21/0.50      ( mnot
% 0.21/0.50      = ( ^ [Phi: $i > $o,W: $i] :
% 0.21/0.50            ~ ( Phi @ W ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(mor_type,type,
% 0.21/0.50      mor: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mor,definition,
% 0.21/0.50      ( mor
% 0.21/0.50      = ( ^ [Phi: $i > $o,Psi: $i > $o,W: $i] :
% 0.21/0.50            ( ( Phi @ W )
% 0.21/0.50            | ( Psi @ W ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(mbox_type,type,
% 0.21/0.50      mbox: ( $i > $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mbox,definition,
% 0.21/0.50      ( mbox
% 0.21/0.50      = ( ^ [R: $i > $i > $o,Phi: $i > $o,W: $i] :
% 0.21/0.50          ! [V: $i] :
% 0.21/0.50            ( ~ ( R @ W @ V )
% 0.21/0.50            | ( Phi @ V ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(mforall_prop_type,type,
% 0.21/0.50      mforall_prop: ( ( $i > $o ) > $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mforall_prop,definition,
% 0.21/0.50      ( mforall_prop
% 0.21/0.50      = ( ^ [Phi: ( $i > $o ) > $i > $o,W: $i] :
% 0.21/0.50          ! [P: $i > $o] : ( Phi @ P @ W ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  %----Further modal operators
% 0.21/0.50  thf(mtrue_type,type,
% 0.21/0.50      mtrue: $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mtrue,definition,
% 0.21/0.50      ( mtrue
% 0.21/0.50      = ( ^ [W: $i] : $true ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(mfalse_type,type,
% 0.21/0.50      mfalse: $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mfalse,definition,
% 0.21/0.50      ( mfalse
% 0.21/0.50      = ( mnot @ mtrue ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(mand_type,type,
% 0.21/0.50      mand: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mand,definition,
% 0.21/0.50      ( mand
% 0.21/0.50      = ( ^ [Phi: $i > $o,Psi: $i > $o] : ( mnot @ ( mor @ ( mnot @ Phi ) @ ( mnot @ Psi ) ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(mimplies_type,type,
% 0.21/0.50      mimplies: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mimplies,definition,
% 0.21/0.50      ( mimplies
% 0.21/0.50      = ( ^ [Phi: $i > $o,Psi: $i > $o] : ( mor @ ( mnot @ Phi ) @ Psi ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(mimplied_type,type,
% 0.21/0.50      mimplied: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mimplied,definition,
% 0.21/0.50      ( mimplied
% 0.21/0.50      = ( ^ [Phi: $i > $o,Psi: $i > $o] : ( mor @ ( mnot @ Psi ) @ Phi ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(mequiv_type,type,
% 0.21/0.50      mequiv: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mequiv,definition,
% 0.21/0.50      ( mequiv
% 0.21/0.50      = ( ^ [Phi: $i > $o,Psi: $i > $o] : ( mand @ ( mimplies @ Phi @ Psi ) @ ( mimplies @ Psi @ Phi ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(mxor_type,type,
% 0.21/0.50      mxor: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mxor,definition,
% 0.21/0.50      ( mxor
% 0.21/0.50      = ( ^ [Phi: $i > $o,Psi: $i > $o] : ( mnot @ ( mequiv @ Phi @ Psi ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(mdia_type,type,
% 0.21/0.50      mdia: ( $i > $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mdia,definition,
% 0.21/0.50      ( mdia
% 0.21/0.50      = ( ^ [R: $i > $i > $o,Phi: $i > $o] : ( mnot @ ( mbox @ R @ ( mnot @ Phi ) ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  %--- (new for cumulative)
% 0.21/0.50  %---Declaration of existence predicate for simulating cumulative domain
% 0.21/0.50  thf(exists_in_world_type,type,
% 0.21/0.50      exists_in_world: mu > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  %----The domains are non-empty
% 0.21/0.50  thf(nonempty_ax,axiom,
% 0.21/0.50      ! [V: $i] :
% 0.21/0.50      ? [X: mu] : ( exists_in_world @ X @ V ) ).
% 0.21/0.50  
% 0.21/0.50  thf(mforall_ind_type,type,
% 0.21/0.50      mforall_ind: ( mu > $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  %--- (new for cumulative)
% 0.21/0.50  thf(mforall_ind,definition,
% 0.21/0.50      ( mforall_ind
% 0.21/0.50      = ( ^ [Phi: mu > $i > $o,W: $i] :
% 0.21/0.50          ! [X: mu] :
% 0.21/0.50            ( ( exists_in_world @ X @ W )
% 0.21/0.50           => ( Phi @ X @ W ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  %thf(mforall_ind,definition,
% 0.21/0.50  %    ( mforall_ind
% 0.21/0.50  %    = ( ^ [Phi: mu > $i > $o,W: $i] :
% 0.21/0.50  %        ! [X: mu] :
% 0.21/0.50  %          ( Phi @ X @ W ) ) )).
% 0.21/0.50  
% 0.21/0.50  thf(mexists_ind_type,type,
% 0.21/0.50      mexists_ind: ( mu > $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mexists_ind,definition,
% 0.21/0.50      ( mexists_ind
% 0.21/0.50      = ( ^ [Phi: mu > $i > $o] :
% 0.21/0.50            ( mnot
% 0.21/0.50            @ ( mforall_ind
% 0.21/0.50              @ ^ [X: mu] : ( mnot @ ( Phi @ X ) ) ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(mexists_prop_type,type,
% 0.21/0.50      mexists_prop: ( ( $i > $o ) > $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mexists_prop,definition,
% 0.21/0.50      ( mexists_prop
% 0.21/0.50      = ( ^ [Phi: ( $i > $o ) > $i > $o] :
% 0.21/0.50            ( mnot
% 0.21/0.50            @ ( mforall_prop
% 0.21/0.50              @ ^ [P: $i > $o] : ( mnot @ ( Phi @ P ) ) ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  %----Definition of properties of accessibility relations
% 0.21/0.50  thf(mreflexive_type,type,
% 0.21/0.50      mreflexive: ( $i > $i > $o ) > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mreflexive,definition,
% 0.21/0.50      ( mreflexive
% 0.21/0.50      = ( ^ [R: $i > $i > $o] :
% 0.21/0.50          ! [S: $i] : ( R @ S @ S ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(msymmetric_type,type,
% 0.21/0.50      msymmetric: ( $i > $i > $o ) > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(msymmetric,definition,
% 0.21/0.50      ( msymmetric
% 0.21/0.50      = ( ^ [R: $i > $i > $o] :
% 0.21/0.50          ! [S: $i,T: $i] :
% 0.21/0.50            ( ( R @ S @ T )
% 0.21/0.50           => ( R @ T @ S ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(mserial_type,type,
% 0.21/0.50      mserial: ( $i > $i > $o ) > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mserial,definition,
% 0.21/0.50      ( mserial
% 0.21/0.50      = ( ^ [R: $i > $i > $o] :
% 0.21/0.50          ! [S: $i] :
% 0.21/0.50          ? [T: $i] : ( R @ S @ T ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(mtransitive_type,type,
% 0.21/0.50      mtransitive: ( $i > $i > $o ) > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mtransitive,definition,
% 0.21/0.50      ( mtransitive
% 0.21/0.50      = ( ^ [R: $i > $i > $o] :
% 0.21/0.50          ! [S: $i,T: $i,U: $i] :
% 0.21/0.50            ( ( ( R @ S @ T )
% 0.21/0.50              & ( R @ T @ U ) )
% 0.21/0.50           => ( R @ S @ U ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(meuclidean_type,type,
% 0.21/0.50      meuclidean: ( $i > $i > $o ) > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(meuclidean,definition,
% 0.21/0.50      ( meuclidean
% 0.21/0.50      = ( ^ [R: $i > $i > $o] :
% 0.21/0.50          ! [S: $i,T: $i,U: $i] :
% 0.21/0.50            ( ( ( R @ S @ T )
% 0.21/0.50              & ( R @ S @ U ) )
% 0.21/0.50           => ( R @ T @ U ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(mpartially_functional_type,type,
% 0.21/0.50      mpartially_functional: ( $i > $i > $o ) > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mpartially_functional,definition,
% 0.21/0.50      ( mpartially_functional
% 0.21/0.50      = ( ^ [R: $i > $i > $o] :
% 0.21/0.50          ! [S: $i,T: $i,U: $i] :
% 0.21/0.50            ( ( ( R @ S @ T )
% 0.21/0.50              & ( R @ S @ U ) )
% 0.21/0.50           => ( T = U ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(mfunctional_type,type,
% 0.21/0.50      mfunctional: ( $i > $i > $o ) > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mfunctional,definition,
% 0.21/0.50      ( mfunctional
% 0.21/0.50      = ( ^ [R: $i > $i > $o] :
% 0.21/0.50          ! [S: $i] :
% 0.21/0.50          ? [T: $i] :
% 0.21/0.50            ( ( R @ S @ T )
% 0.21/0.50            & ! [U: $i] :
% 0.21/0.50                ( ( R @ S @ U )
% 0.21/0.50               => ( T = U ) ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(mweakly_dense_type,type,
% 0.21/0.50      mweakly_dense: ( $i > $i > $o ) > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mweakly_dense,definition,
% 0.21/0.50      ( mweakly_dense
% 0.21/0.50      = ( ^ [R: $i > $i > $o] :
% 0.21/0.50          ! [S: $i,T: $i,U: $i] :
% 0.21/0.50            ( ( R @ S @ T )
% 0.21/0.50           => ? [U: $i] :
% 0.21/0.50                ( ( R @ S @ U )
% 0.21/0.50                & ( R @ U @ T ) ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(mweakly_connected_type,type,
% 0.21/0.50      mweakly_connected: ( $i > $i > $o ) > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mweakly_connected,definition,
% 0.21/0.50      ( mweakly_connected
% 0.21/0.50      = ( ^ [R: $i > $i > $o] :
% 0.21/0.50          ! [S: $i,T: $i,U: $i] :
% 0.21/0.50            ( ( ( R @ S @ T )
% 0.21/0.50              & ( R @ S @ U ) )
% 0.21/0.50           => ( ( R @ T @ U )
% 0.21/0.50              | ( T = U )
% 0.21/0.50              | ( R @ U @ T ) ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(mweakly_directed_type,type,
% 0.21/0.50      mweakly_directed: ( $i > $i > $o ) > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mweakly_directed,definition,
% 0.21/0.50      ( mweakly_directed
% 0.21/0.50      = ( ^ [R: $i > $i > $o] :
% 0.21/0.50          ! [S: $i,T: $i,U: $i] :
% 0.21/0.50            ( ( ( R @ S @ T )
% 0.21/0.50              & ( R @ S @ U ) )
% 0.21/0.50           => ? [V: $i] :
% 0.21/0.50                ( ( R @ T @ V )
% 0.21/0.50                & ( R @ U @ V ) ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  %----Definition of validity
% 0.21/0.50  thf(mvalid_type,type,
% 0.21/0.50      mvalid: ( $i > $o ) > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mvalid,definition,
% 0.21/0.50      ( mvalid
% 0.21/0.50      = ( ^ [Phi: $i > $o] :
% 0.21/0.50          ! [W: $i] : ( Phi @ W ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  %----Definition of satisfiability
% 0.21/0.50  thf(msatisfiable_type,type,
% 0.21/0.50      msatisfiable: ( $i > $o ) > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(msatisfiable,definition,
% 0.21/0.50      ( msatisfiable
% 0.21/0.50      = ( ^ [Phi: $i > $o] :
% 0.21/0.50          ? [W: $i] : ( Phi @ W ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  %----Definition of countersatisfiability
% 0.21/0.50  thf(mcountersatisfiable_type,type,
% 0.21/0.50      mcountersatisfiable: ( $i > $o ) > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mcountersatisfiable,definition,
% 0.21/0.50      ( mcountersatisfiable
% 0.21/0.50      = ( ^ [Phi: $i > $o] :
% 0.21/0.50          ? [W: $i] :
% 0.21/0.50            ~ ( Phi @ W ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  %----Definition of invalidity
% 0.21/0.50  thf(minvalid_type,type,
% 0.21/0.50      minvalid: ( $i > $o ) > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(minvalid,definition,
% 0.21/0.50      ( minvalid
% 0.21/0.50      = ( ^ [Phi: $i > $o] :
% 0.21/0.50          ! [W: $i] :
% 0.21/0.50            ~ ( Phi @ W ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  %------------------------------------------------------------------------------
% 0.21/0.50  %------------------------------------------------------------------------------
% 0.21/0.50  %----We reserve an accessibility relation constant rel_s4
% 0.21/0.50  thf(rel_s4_type,type,
% 0.21/0.50      rel_s4: $i > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  %----We define mbox_s4 and mdia_s4 based on rel_s4
% 0.21/0.50  thf(mbox_s4_type,type,
% 0.21/0.50      mbox_s4: ( $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mbox_s4,definition,
% 0.21/0.50      ( mbox_s4
% 0.21/0.50      = ( ^ [Phi: $i > $o,W: $i] :
% 0.21/0.50          ! [V: $i] :
% 0.21/0.50            ( ~ ( rel_s4 @ W @ V )
% 0.21/0.50            | ( Phi @ V ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(mdia_s4_type,type,
% 0.21/0.50      mdia_s4: ( $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mdia_s4,definition,
% 0.21/0.50      ( mdia_s4
% 0.21/0.50      = ( ^ [Phi: $i > $o] : ( mnot @ ( mbox_s4 @ ( mnot @ Phi ) ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  %----We have now two options for stating the B conditions: 
% 0.21/0.50  %----We can (i) directly formulate conditions for the accessibility relation
% 0.21/0.50  %----constant or we can (ii) state corresponding axioms. We here prefer (i)
% 0.21/0.50  thf(a1,axiom,
% 0.21/0.50      mreflexive @ rel_s4 ).
% 0.21/0.50  
% 0.21/0.50  thf(a2,axiom,
% 0.21/0.50      mtransitive @ rel_s4 ).
% 0.21/0.50  
% 0.21/0.50  %------------------------------------------------------------------------------
% 0.21/0.50  %------------------------------------------------------------------------------
% 0.21/0.50  thf(cumulative_ax,axiom,
% 0.21/0.50      ! [X: mu,V: $i,W: $i] :
% 0.21/0.50        ( ( ( exists_in_world @ X @ V )
% 0.21/0.50          & ( rel_s4 @ V @ W ) )
% 0.21/0.50       => ( exists_in_world @ X @ W ) ) ).
% 0.21/0.50  
% 0.21/0.50  %------------------------------------------------------------------------------
% 0.21/0.50  %------------------------------------------------------------------------------
% 0.21/0.50  thf(dest_type,type,
% 0.21/0.50      dest: mu > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(class_type,type,
% 0.21/0.50      class: mu > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(price_type,type,
% 0.21/0.50      price: mu > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(first_type,type,
% 0.21/0.50      first: mu ).
% 0.21/0.50  
% 0.21/0.50  thf(existence_of_first_ax,axiom,
% 0.21/0.50      ! [V: $i] : ( exists_in_world @ first @ V ) ).
% 0.21/0.50  
% 0.21/0.50  thf(ninetyfive_type,type,
% 0.21/0.50      ninetyfive: mu ).
% 0.21/0.50  
% 0.21/0.50  thf(existence_of_ninetyfive_ax,axiom,
% 0.21/0.50      ! [V: $i] : ( exists_in_world @ ninetyfive @ V ) ).
% 0.21/0.50  
% 0.21/0.50  thf(paris_type,type,
% 0.21/0.50      paris: mu ).
% 0.21/0.50  
% 0.21/0.50  thf(existence_of_paris_ax,axiom,
% 0.21/0.50      ! [V: $i] : ( exists_in_world @ paris @ V ) ).
% 0.21/0.50  
% 0.21/0.50  thf(second_type,type,
% 0.21/0.50      second: mu ).
% 0.21/0.50  
% 0.21/0.50  thf(existence_of_second_ax,axiom,
% 0.21/0.50      ! [V: $i] : ( exists_in_world @ second @ V ) ).
% 0.21/0.50  
% 0.21/0.50  thf(seventy_type,type,
% 0.21/0.50      seventy: mu ).
% 0.21/0.50  
% 0.21/0.50  thf(existence_of_seventy_ax,axiom,
% 0.21/0.50      ! [V: $i] : ( exists_in_world @ seventy @ V ) ).
% 0.21/0.50  
% 0.21/0.50  thf(law1,axiom,
% 0.21/0.50      mvalid @ ( mbox_s4 @ ( mimplies @ ( mand @ ( dest @ paris ) @ ( class @ first ) ) @ ( price @ ninetyfive ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(law2,axiom,
% 0.21/0.50      mvalid @ ( mbox_s4 @ ( mimplies @ ( mand @ ( dest @ paris ) @ ( class @ second ) ) @ ( price @ seventy ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(law3,axiom,
% 0.21/0.50      mvalid @ ( mbox_s4 @ ( mnot @ ( mand @ ( class @ first ) @ ( class @ second ) ) ) ) ).
% 0.21/0.52  
% 0.21/0.52  thf(law4,axiom,
% 0.21/0.52      mvalid @ ( mbox_s4 @ ( mnot @ ( mand @ ( price @ ninetyfive ) @ ( price @ seventy ) ) ) ) ).
% 0.21/0.52  
% 0.21/0.52  thf(belief1,axiom,
% 0.21/0.52      mvalid @ ( mbox_s4 @ ( dest @ paris ) ) ).
% 0.21/0.52  
% 0.21/0.52  thf(belief2,axiom,
% 0.21/0.52      mvalid @ ( mbox_s4 @ ( class @ second ) ) ).
% 0.21/0.52  
% 0.21/0.52  thf(con,conjecture,
% 0.21/0.52      mvalid @ ( mbox_s4 @ ( price @ seventy ) ) ).
% 0.21/0.52  
% 0.21/0.52  %------------------------------------------------------------------------------
% 0.21/0.52  ------- convert to smt2 : /export/starexec/sandbox/tmp/tmp.8CkczvaOuc/cvc5---1.0.5_8570.p...
% 0.21/0.52  (declare-sort $$unsorted 0)
% 0.21/0.52  (declare-sort tptp.mu 0)
% 0.21/0.52  (declare-fun tptp.qmltpeq (tptp.mu tptp.mu $$unsorted) Bool)
% 0.21/0.52  (declare-fun tptp.meq_prop ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.52  (assert (= tptp.meq_prop (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (W $$unsorted)) (= (@ X W) (@ Y W)))))
% 0.21/0.52  (declare-fun tptp.mnot ((-> $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.52  (assert (= tptp.mnot (lambda ((Phi (-> $$unsorted Bool)) (W $$unsorted)) (not (@ Phi W)))))
% 0.21/0.52  (declare-fun tptp.mor ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.52  (assert (= tptp.mor (lambda ((Phi (-> $$unsorted Bool)) (Psi (-> $$unsorted Bool)) (W $$unsorted)) (or (@ Phi W) (@ Psi W)))))
% 0.21/0.52  (declare-fun tptp.mbox ((-> $$unsorted $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.52  (assert (= tptp.mbox (lambda ((R (-> $$unsorted $$unsorted Bool)) (Phi (-> $$unsorted Bool)) (W $$unsorted)) (forall ((V $$unsorted)) (or (not (@ (@ R W) V)) (@ Phi V))))))
% 0.21/0.52  (declare-fun tptp.mforall_prop ((-> (-> $$unsorted Bool) $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.52  (assert (= tptp.mforall_prop (lambda ((Phi (-> (-> $$unsorted Bool) $$unsorted Bool)) (W $$unsorted)) (forall ((P (-> $$unsorted Bool))) (@ (@ Phi P) W)))))
% 0.21/0.52  (declare-fun tptp.mtrue ($$unsorted) Bool)
% 0.21/0.52  (assert (= tptp.mtrue (lambda ((W $$unsorted)) true)))
% 0.21/0.52  (declare-fun tptp.mfalse ($$unsorted) Bool)
% 0.21/0.52  (assert (= tptp.mfalse (@ tptp.mnot tptp.mtrue)))
% 0.21/0.52  (declare-fun tptp.mand ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.52  (assert (= tptp.mand (lambda ((Phi (-> $$unsorted Bool)) (Psi (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ (@ tptp.mor (@ tptp.mnot Phi)) (@ tptp.mnot Psi))) __flatten_var_0))))
% 0.21/0.52  (declare-fun tptp.mimplies ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.52  (assert (= tptp.mimplies (lambda ((Phi (-> $$unsorted Bool)) (Psi (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mor (@ tptp.mnot Phi)) Psi) __flatten_var_0))))
% 0.21/0.52  (declare-fun tptp.mimplied ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.52  (assert (= tptp.mimplied (lambda ((Phi (-> $$unsorted Bool)) (Psi (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mor (@ tptp.mnot Psi)) Phi) __flatten_var_0))))
% 0.21/0.52  (declare-fun tptp.mequiv ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.52  (assert (= tptp.mequiv (lambda ((Phi (-> $$unsorted Bool)) (Psi (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mand (@ (@ tptp.mimplies Phi) Psi)) (@ (@ tptp.mimplies Psi) Phi)) __flatten_var_0))))
% 0.21/0.52  (declare-fun tptp.mxor ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.52  (assert (= tptp.mxor (lambda ((Phi (-> $$unsorted Bool)) (Psi (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ (@ tptp.mequiv Phi) Psi)) __flatten_var_0))))
% 0.21/0.52  (declare-fun tptp.mdia ((-> $$unsorted $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.52  (assert (= tptp.mdia (lambda ((R (-> $$unsorted $$unsorted Bool)) (Phi (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ (@ tptp.mbox R) (@ tptp.mnot Phi))) __flatten_var_0))))
% 0.21/0.52  (declare-fun tptp.exists_in_world (tptp.mu $$unsorted) Bool)
% 0.21/0.52  (assert (forall ((V $$unsorted)) (exists ((X tptp.mu)) (@ (@ tptp.exists_in_world X) V))))
% 0.21/0.52  (declare-fun tptp.mforall_ind ((-> tptp.mu $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.52  (assert (= tptp.mforall_ind (lambda ((Phi (-> tptp.mu $$unsorted Bool)) (W $$unsorted)) (forall ((X tptp.mu)) (=> (@ (@ tptp.exists_in_world X) W) (@ (@ Phi X) W))))))
% 0.21/0.52  (declare-fun tptp.mexists_ind ((-> tptp.mu $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.52  (assert (= tptp.mexists_ind (lambda ((Phi (-> tptp.mu $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ tptp.mforall_ind (lambda ((X tptp.mu) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ Phi X)) __flatten_var_0)))) __flatten_var_0))))
% 0.21/0.52  (declare-fun tptp.mexists_prop ((-> (-> $$unsorted Bool) $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.52  (assert (= tptp.mexists_prop (lambda ((Phi (-> (-> $$unsorted Bool) $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ tptp.mforall_prop (lambda ((P (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ Phi P)) __flatten_var_0)))) __flatten_var_0))))
% 0.21/0.52  (declare-fun tptp.mreflexive ((-> $$unsorted $$unsorted Bool)) Bool)
% 0.21/0.52  (assert (= tptp.mreflexive (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted)) (@ (@ R S) S)))))
% 0.21/0.52  (declare-fun tptp.msymmetric ((-> $$unsorted $$unsorted Bool)) Bool)
% 0.21/0.52  (assert (= tptp.msymmetric (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted)) (=> (@ (@ R S) T) (@ (@ R T) S))))))
% 0.21/0.52  (declare-fun tptp.mserial ((-> $$unsorted $$unsorted Bool)) Bool)
% 0.21/0.52  (assert (= tptp.mserial (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted)) (exists ((T $$unsorted)) (@ (@ R S) T))))))
% 0.21/0.52  (declare-fun tptp.mtransitive ((-> $$unsorted $$unsorted Bool)) Bool)
% 0.21/0.52  (assert (= tptp.mtransitive (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted) (U $$unsorted)) (let ((_let_1 (@ R S))) (=> (and (@ _let_1 T) (@ (@ R T) U)) (@ _let_1 U)))))))
% 0.21/0.52  (declare-fun tptp.meuclidean ((-> $$unsorted $$unsorted Bool)) Bool)
% 0.21/0.52  (assert (= tptp.meuclidean (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted) (U $$unsorted)) (let ((_let_1 (@ R S))) (=> (and (@ _let_1 T) (@ _let_1 U)) (@ (@ R T) U)))))))
% 0.21/0.52  (declare-fun tptp.mpartially_functional ((-> $$unsorted $$unsorted Bool)) Bool)
% 0.21/0.52  (assert (= tptp.mpartially_functional (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted) (U $$unsorted)) (let ((_let_1 (@ R S))) (=> (and (@ _let_1 T) (@ _let_1 U)) (= T U)))))))
% 0.21/0.52  (declare-fun tptp.mfunctional ((-> $$unsorted $$unsorted Bool)) Bool)
% 0.21/0.52  (assert (= tptp.mfunctional (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted)) (exists ((T $$unsorted)) (and (@ (@ R S) T) (forall ((U $$unsorted)) (=> (@ (@ R S) U) (= T U)))))))))
% 0.21/0.52  (declare-fun tptp.mweakly_dense ((-> $$unsorted $$unsorted Bool)) Bool)
% 0.21/0.52  (assert (= tptp.mweakly_dense (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted) (U $$unsorted)) (=> (@ (@ R S) T) (exists ((U $$unsorted)) (and (@ (@ R S) U) (@ (@ R U) T))))))))
% 0.21/0.52  (declare-fun tptp.mweakly_connected ((-> $$unsorted $$unsorted Bool)) Bool)
% 0.21/0.52  (assert (= tptp.mweakly_connected (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted) (U $$unsorted)) (let ((_let_1 (@ R S))) (=> (and (@ _let_1 T) (@ _let_1 U)) (or (@ (@ R T) U) (= T U) (@ (@ R U) T))))))))
% 0.21/0.52  (declare-fun tptp.mweakly_directed ((-> $$unsorted $$unsorted Bool)) Bool)
% 0.21/0.52  (assert (= tptp.mweakly_directed (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted) (U $$unsorted)) (let ((_let_1 (@ R S))) (=> (and (@ _let_1 T) (@ _let_1 U)) (exists ((V $$unsorted)) (and (@ (@ R T) V) (@ (@ R U) V)))))))))
% 0.21/0.52  (declare-fun tptp.mvalid ((-> $$unsorted Bool)) Bool)
% 0.21/0.52  (assert (= tptp.mvalid (lambda ((Phi (-> $$unsorted Bool))) (forall ((W $$unsorted)) (@ Phi W)))))
% 0.21/0.52  (declare-fun tptp.msatisfiable ((-> $$unsorted Bool)) Bool)
% 0.21/0.52  (assert (= tptp.msatisfiable (lambda ((Phi (-> $$unsorted Bool))) (exists ((W $$unsorted)) (@ Phi W)))))
% 0.21/0.52  (declare-fun tptp.mcountersatisfiable ((-> $$unsorted Bool)) Bool)
% 0.21/0.52  (assert (= tptp.mcountersatisfiable (lambda ((Phi (-> $$unsorted Bool))) (exists ((W $$unsorted)) (not (@ Phi W))))))
% 0.21/0.52  (declare-fun tptp.minvalid ((-> $$unsorted Bool)) Bool)
% 0.21/0.52  (assert (= tptp.minvalid (lambda ((Phi (-> $$unsorted Bool))) (forall ((W $$unsorted)) (not (@ Phi W))))))
% 0.21/0.52  (declare-fun tptp.rel_s4 ($$unsorted $$unsorted) Bool)
% 0.21/0.52  (declare-fun tptp.mbox_s4 ((-> $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.52  (assert (= tptp.mbox_s4 (lambda ((Phi (-> $$unsorted Bool)) (W $$unsorted)) (forall ((V $$unsorted)) (or (not (@ (@ tptp.rel_s4 W) V)) (@ Phi V))))))
% 0.21/0.57  (declare-fun tptp.mdia_s4 ((-> $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.57  (assert (= tptp.mdia_s4 (lambda ((Phi (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ tptp.mbox_s4 (@ tptp.mnot Phi))) __flatten_var_0))))
% 0.21/0.57  (assert (@ tptp.mreflexive tptp.rel_s4))
% 0.21/0.57  (assert (@ tptp.mtransitive tptp.rel_s4))
% 0.21/0.57  (assert (forall ((X tptp.mu) (V $$unsorted) (W $$unsorted)) (let ((_let_1 (@ tptp.exists_in_world X))) (=> (and (@ _let_1 V) (@ (@ tptp.rel_s4 V) W)) (@ _let_1 W)))))
% 0.21/0.57  (declare-fun tptp.dest (tptp.mu $$unsorted) Bool)
% 0.21/0.57  (declare-fun tptp.class (tptp.mu $$unsorted) Bool)
% 0.21/0.57  (declare-fun tptp.price (tptp.mu $$unsorted) Bool)
% 0.21/0.57  (declare-fun tptp.first () tptp.mu)
% 0.21/0.57  (assert (forall ((V $$unsorted)) (@ (@ tptp.exists_in_world tptp.first) V)))
% 0.21/0.57  (declare-fun tptp.ninetyfive () tptp.mu)
% 0.21/0.57  (assert (forall ((V $$unsorted)) (@ (@ tptp.exists_in_world tptp.ninetyfive) V)))
% 0.21/0.57  (declare-fun tptp.paris () tptp.mu)
% 0.21/0.57  (assert (forall ((V $$unsorted)) (@ (@ tptp.exists_in_world tptp.paris) V)))
% 0.21/0.57  (declare-fun tptp.second () tptp.mu)
% 0.21/0.57  (assert (forall ((V $$unsorted)) (@ (@ tptp.exists_in_world tptp.second) V)))
% 0.21/0.57  (declare-fun tptp.seventy () tptp.mu)
% 0.21/0.57  (assert (forall ((V $$unsorted)) (@ (@ tptp.exists_in_world tptp.seventy) V)))
% 0.21/0.57  (assert (@ tptp.mvalid (@ tptp.mbox_s4 (@ (@ tptp.mimplies (@ (@ tptp.mand (@ tptp.dest tptp.paris)) (@ tptp.class tptp.first))) (@ tptp.price tptp.ninetyfive)))))
% 0.21/0.57  (assert (@ tptp.mvalid (@ tptp.mbox_s4 (@ (@ tptp.mimplies (@ (@ tptp.mand (@ tptp.dest tptp.paris)) (@ tptp.class tptp.second))) (@ tptp.price tptp.seventy)))))
% 0.21/0.57  (assert (@ tptp.mvalid (@ tptp.mbox_s4 (@ tptp.mnot (@ (@ tptp.mand (@ tptp.class tptp.first)) (@ tptp.class tptp.second))))))
% 0.21/0.57  (assert (@ tptp.mvalid (@ tptp.mbox_s4 (@ tptp.mnot (@ (@ tptp.mand (@ tptp.price tptp.ninetyfive)) (@ tptp.price tptp.seventy))))))
% 0.21/0.57  (assert (@ tptp.mvalid (@ tptp.mbox_s4 (@ tptp.dest tptp.paris))))
% 0.21/0.57  (assert (@ tptp.mvalid (@ tptp.mbox_s4 (@ tptp.class tptp.second))))
% 0.21/0.57  (assert (not (@ tptp.mvalid (@ tptp.mbox_s4 (@ tptp.price tptp.seventy)))))
% 0.21/0.57  (set-info :filename cvc5---1.0.5_8570)
% 0.21/0.57  (check-sat-assuming ( true ))
% 0.21/0.57  ------- get file name : TPTP file name is NLP264^7
% 0.21/0.57  ------- cvc5-thf : /export/starexec/sandbox/solver/bin/cvc5---1.0.5_8570.smt2...
% 0.21/0.57  --- Run --ho-elim --full-saturate-quant at 10...
% 0.21/0.57  % SZS status Theorem for NLP264^7
% 0.21/0.57  % SZS output start Proof for NLP264^7
% 0.21/0.57  (
% 0.21/0.57  (let ((_let_1 (@ tptp.price tptp.seventy))) (let ((_let_2 (not (@ tptp.mvalid (@ tptp.mbox_s4 _let_1))))) (let ((_let_3 (@ tptp.class tptp.second))) (let ((_let_4 (@ tptp.mvalid (@ tptp.mbox_s4 _let_3)))) (let ((_let_5 (@ tptp.dest tptp.paris))) (let ((_let_6 (@ tptp.mvalid (@ tptp.mbox_s4 _let_5)))) (let ((_let_7 (@ tptp.price tptp.ninetyfive))) (let ((_let_8 (@ tptp.class tptp.first))) (let ((_let_9 (@ tptp.mand _let_5))) (let ((_let_10 (@ tptp.mvalid (@ tptp.mbox_s4 (@ (@ tptp.mimplies (@ _let_9 _let_3)) _let_1))))) (let ((_let_11 (= tptp.mdia_s4 (lambda ((Phi (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ tptp.mbox_s4 (@ tptp.mnot Phi))) __flatten_var_0))))) (let ((_let_12 (= tptp.mbox_s4 (lambda ((Phi (-> $$unsorted Bool)) (W $$unsorted)) (forall ((V $$unsorted)) (or (not (@ (@ tptp.rel_s4 W) V)) (@ Phi V))))))) (let ((_let_13 (= tptp.minvalid (lambda ((Phi (-> $$unsorted Bool))) (forall ((W $$unsorted)) (not (@ Phi W))))))) (let ((_let_14 (= tptp.mcountersatisfiable (lambda ((Phi (-> $$unsorted Bool))) (exists ((W $$unsorted)) (not (@ Phi W))))))) (let ((_let_15 (= tptp.msatisfiable (lambda ((Phi (-> $$unsorted Bool))) (exists ((W $$unsorted)) (@ Phi W)))))) (let ((_let_16 (= tptp.mvalid (lambda ((Phi (-> $$unsorted Bool))) (forall ((W $$unsorted)) (@ Phi W)))))) (let ((_let_17 (= tptp.mweakly_directed (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted) (U $$unsorted)) (let ((_let_1 (@ R S))) (=> (and (@ _let_1 T) (@ _let_1 U)) (exists ((V $$unsorted)) (and (@ (@ R T) V) (@ (@ R U) V)))))))))) (let ((_let_18 (= tptp.mweakly_connected (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted) (U $$unsorted)) (let ((_let_1 (@ R S))) (=> (and (@ _let_1 T) (@ _let_1 U)) (or (@ (@ R T) U) (= T U) (@ (@ R U) T))))))))) (let ((_let_19 (= tptp.mweakly_dense (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted) (U $$unsorted)) (=> (@ (@ R S) T) (exists ((U $$unsorted)) (and (@ (@ R S) U) (@ (@ R U) T))))))))) (let ((_let_20 (= tptp.mfunctional (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted)) (exists ((T $$unsorted)) (and (@ (@ R S) T) (forall ((U $$unsorted)) (=> (@ (@ R S) U) (= T U)))))))))) (let ((_let_21 (= tptp.mpartially_functional (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted) (U $$unsorted)) (let ((_let_1 (@ R S))) (=> (and (@ _let_1 T) (@ _let_1 U)) (= T U)))))))) (let ((_let_22 (= tptp.meuclidean (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted) (U $$unsorted)) (let ((_let_1 (@ R S))) (=> (and (@ _let_1 T) (@ _let_1 U)) (@ (@ R T) U)))))))) (let ((_let_23 (= tptp.mtransitive (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted) (U $$unsorted)) (let ((_let_1 (@ R S))) (=> (and (@ _let_1 T) (@ (@ R T) U)) (@ _let_1 U)))))))) (let ((_let_24 (= tptp.mserial (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted)) (exists ((T $$unsorted)) (@ (@ R S) T))))))) (let ((_let_25 (= tptp.msymmetric (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted)) (=> (@ (@ R S) T) (@ (@ R T) S))))))) (let ((_let_26 (= tptp.mreflexive (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted)) (@ (@ R S) S)))))) (let ((_let_27 (= tptp.mexists_prop (lambda ((Phi (-> (-> $$unsorted Bool) $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ tptp.mforall_prop (lambda ((P (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ Phi P)) __flatten_var_0)))) __flatten_var_0))))) (let ((_let_28 (= tptp.mexists_ind (lambda ((Phi (-> tptp.mu $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ tptp.mforall_ind (lambda ((X tptp.mu) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ Phi X)) __flatten_var_0)))) __flatten_var_0))))) (let ((_let_29 (= tptp.mforall_ind (lambda ((Phi (-> tptp.mu $$unsorted Bool)) (W $$unsorted)) (forall ((X tptp.mu)) (=> (@ (@ tptp.exists_in_world X) W) (@ (@ Phi X) W))))))) (let ((_let_30 (= tptp.mdia (lambda ((R (-> $$unsorted $$unsorted Bool)) (Phi (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ (@ tptp.mbox R) (@ tptp.mnot Phi))) __flatten_var_0))))) (let ((_let_31 (= tptp.mxor (lambda ((Phi (-> $$unsorted Bool)) (Psi (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ (@ tptp.mequiv Phi) Psi)) __flatten_var_0))))) (let ((_let_32 (= tptp.mequiv (lambda ((Phi (-> $$unsorted Bool)) (Psi (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mand (@ (@ tptp.mimplies Phi) Psi)) (@ (@ tptp.mimplies Psi) Phi)) __flatten_var_0))))) (let ((_let_33 (= tptp.mimplied (lambda ((Phi (-> $$unsorted Bool)) (Psi (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mor (@ tptp.mnot Psi)) Phi) __flatten_var_0))))) (let ((_let_34 (= tptp.mimplies (lambda ((Phi (-> $$unsorted Bool)) (Psi (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mor (@ tptp.mnot Phi)) Psi) __flatten_var_0))))) (let ((_let_35 (= tptp.mand (lambda ((Phi (-> $$unsorted Bool)) (Psi (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ (@ tptp.mor (@ tptp.mnot Phi)) (@ tptp.mnot Psi))) __flatten_var_0))))) (let ((_let_36 (= tptp.mfalse (@ tptp.mnot tptp.mtrue)))) (let ((_let_37 (= tptp.mtrue (lambda ((W $$unsorted)) true)))) (let ((_let_38 (= tptp.mforall_prop (lambda ((Phi (-> (-> $$unsorted Bool) $$unsorted Bool)) (W $$unsorted)) (forall ((P (-> $$unsorted Bool))) (@ (@ Phi P) W)))))) (let ((_let_39 (= tptp.mbox (lambda ((R (-> $$unsorted $$unsorted Bool)) (Phi (-> $$unsorted Bool)) (W $$unsorted)) (forall ((V $$unsorted)) (or (not (@ (@ R W) V)) (@ Phi V))))))) (let ((_let_40 (= tptp.mor (lambda ((Phi (-> $$unsorted Bool)) (Psi (-> $$unsorted Bool)) (W $$unsorted)) (or (@ Phi W) (@ Psi W)))))) (let ((_let_41 (= tptp.mnot (lambda ((Phi (-> $$unsorted Bool)) (W $$unsorted)) (not (@ Phi W)))))) (let ((_let_42 (= tptp.meq_prop (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (W $$unsorted)) (= (@ X W) (@ Y W)))))) (let ((_let_43 (ho_4 (ho_6 k_5 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_10) SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_11))) (let ((_let_44 (ho_4 (ho_3 k_9 tptp.seventy) SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_11))) (let ((_let_45 (ho_4 (ho_3 k_7 tptp.second) SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_11))) (let ((_let_46 (not _let_45))) (let ((_let_47 (ho_4 (ho_3 k_8 tptp.paris) SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_11))) (let ((_let_48 (not _let_47))) (let ((_let_49 (not _let_43))) (let ((_let_50 (or _let_49 _let_44 _let_48 _let_46))) (let ((_let_51 (or _let_49 _let_44))) (let ((_let_52 (forall ((W $$unsorted) (V $$unsorted)) (or (not (ho_4 (ho_6 k_5 W) V)) (ho_4 (ho_3 k_9 tptp.seventy) V))))) (let ((_let_53 (not _let_51))) (let ((_let_54 (not _let_52))) (let ((_let_55 (ASSUME :args (_let_42)))) (let ((_let_56 (ASSUME :args (_let_41)))) (let ((_let_57 (ASSUME :args (_let_40)))) (let ((_let_58 (ASSUME :args (_let_39)))) (let ((_let_59 (ASSUME :args (_let_38)))) (let ((_let_60 (EQ_RESOLVE (ASSUME :args (_let_37)) (MACRO_SR_EQ_INTRO :args (_let_37 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_61 (EQ_RESOLVE (ASSUME :args (_let_36)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_60 _let_59 _let_58 _let_57 _let_56 _let_55) :args (_let_36 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_62 (EQ_RESOLVE (ASSUME :args (_let_35)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_61 _let_60 _let_59 _let_58 _let_57 _let_56 _let_55) :args (_let_35 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_63 (EQ_RESOLVE (ASSUME :args (_let_34)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_62 _let_61 _let_60 _let_59 _let_58 _let_57 _let_56 _let_55) :args (_let_34 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_64 (EQ_RESOLVE (ASSUME :args (_let_33)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_63 _let_62 _let_61 _let_60 _let_59 _let_58 _let_57 _let_56 _let_55) :args (_let_33 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_65 (EQ_RESOLVE (ASSUME :args (_let_32)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_64 _let_63 _let_62 _let_61 _let_60 _let_59 _let_58 _let_57 _let_56 _let_55) :args (_let_32 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_66 (EQ_RESOLVE (ASSUME :args (_let_31)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_65 _let_64 _let_63 _let_62 _let_61 _let_60 _let_59 _let_58 _let_57 _let_56 _let_55) :args (_let_31 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_67 (EQ_RESOLVE (ASSUME :args (_let_30)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_66 _let_65 _let_64 _let_63 _let_62 _let_61 _let_60 _let_59 _let_58 _let_57 _let_56 _let_55) :args (_let_30 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_68 (EQ_RESOLVE (ASSUME :args (_let_29)) (MACRO_SR_EQ_INTRO :args (_let_29 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_69 (EQ_RESOLVE (ASSUME :args (_let_28)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_68 _let_67 _let_66 _let_65 _let_64 _let_63 _let_62 _let_61 _let_60 _let_59 _let_58 _let_57 _let_56 _let_55) :args (_let_28 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_70 (EQ_RESOLVE (ASSUME :args (_let_27)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_69 _let_68 _let_67 _let_66 _let_65 _let_64 _let_63 _let_62 _let_61 _let_60 _let_59 _let_58 _let_57 _let_56 _let_55) :args (_let_27 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_71 (ASSUME :args (_let_26)))) (let ((_let_72 (EQ_RESOLVE (ASSUME :args (_let_25)) (MACRO_SR_EQ_INTRO :args (_let_25 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_73 (EQ_RESOLVE (ASSUME :args (_let_24)) (MACRO_SR_EQ_INTRO :args (_let_24 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_74 (EQ_RESOLVE (ASSUME :args (_let_23)) (MACRO_SR_EQ_INTRO :args (_let_23 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_75 (EQ_RESOLVE (ASSUME :args (_let_22)) (MACRO_SR_EQ_INTRO :args (_let_22 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_76 (EQ_RESOLVE (ASSUME :args (_let_21)) (MACRO_SR_EQ_INTRO :args (_let_21 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_77 (EQ_RESOLVE (ASSUME :args (_let_20)) (MACRO_SR_EQ_INTRO :args (_let_20 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_78 (EQ_RESOLVE (ASSUME :args (_let_19)) (MACRO_SR_EQ_INTRO :args (_let_19 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_79 (EQ_RESOLVE (ASSUME :args (_let_18)) (MACRO_SR_EQ_INTRO :args (_let_18 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_80 (EQ_RESOLVE (ASSUME :args (_let_17)) (MACRO_SR_EQ_INTRO :args (_let_17 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_81 (ASSUME :args (_let_16)))) (let ((_let_82 (EQ_RESOLVE (ASSUME :args (_let_15)) (MACRO_SR_EQ_INTRO :args (_let_15 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_83 (EQ_RESOLVE (ASSUME :args (_let_14)) (MACRO_SR_EQ_INTRO :args (_let_14 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_84 (ASSUME :args (_let_13)))) (let ((_let_85 (ASSUME :args (_let_12)))) (let ((_let_86 (AND_INTRO (EQ_RESOLVE (ASSUME :args (_let_11)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_85 _let_84 _let_83 _let_82 _let_81 _let_80 _let_79 _let_78 _let_77 _let_76 _let_75 _let_74 _let_73 _let_72 _let_71 _let_70 _let_69 _let_68 _let_67 _let_66 _let_65 _let_64 _let_63 _let_62 _let_61 _let_60 _let_59 _let_58 _let_57 _let_56 _let_55) :args (_let_11 SB_DEFAULT SBA_FIXPOINT))) _let_85 _let_84 _let_83 _let_82 _let_81 _let_80 _let_79 _let_78 _let_77 _let_76 _let_75 _let_74 _let_73 _let_72 _let_71 _let_70 _let_69 _let_68 _let_67 _let_66 _let_65 _let_64 _let_63 _let_62 _let_61 _let_60 _let_59 _let_58 _let_57 _let_56 _let_55))) (let ((_let_87 (EQ_RESOLVE (ASSUME :args (_let_2)) (TRANS (MACRO_SR_EQ_INTRO _let_86 :args (_let_2 SB_DEFAULT SBA_FIXPOINT)) (PREPROCESS :args ((= (not (forall ((W $$unsorted) (V $$unsorted)) (or (not (@ (@ tptp.rel_s4 W) V)) (@ (@ tptp.price tptp.seventy) V)))) _let_54))))))) (let ((_let_88 (or))) (let ((_let_89 (MACRO_RESOLUTION_TRUST (EQ_RESOLVE (IMPLIES_ELIM (SCOPE (SKOLEMIZE _let_87) :args (_let_54))) (CONG (MACRO_SR_PRED_INTRO :args ((= (not _let_54) _let_52))) (REFL :args (_let_53)) :args _let_88)) _let_87 :args (_let_53 true _let_52)))) (let ((_let_90 (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG :args (_let_51 0)) (CONG (REFL :args (_let_51)) (MACRO_SR_PRED_INTRO :args ((= (not _let_49) _let_43))) :args _let_88)) :args ((or _let_43 _let_51))) _let_89 :args (_let_43 true _let_51)))) (let ((_let_91 (forall ((W $$unsorted) (V $$unsorted)) (or (not (ho_4 (ho_6 k_5 W) V)) (ho_4 (ho_3 k_9 tptp.seventy) V) (not (ho_4 (ho_3 k_8 tptp.paris) V)) (not (ho_4 (ho_3 k_7 tptp.second) V)))))) (let ((_let_92 (EQ_RESOLVE (ASSUME :args (_let_10)) (TRANS (MACRO_SR_EQ_INTRO _let_86 :args (_let_10 SB_DEFAULT SBA_FIXPOINT)) (PREPROCESS :args ((= (forall ((W $$unsorted) (V $$unsorted)) (or (not (@ (@ tptp.rel_s4 W) V)) (@ (@ tptp.price tptp.seventy) V) (not (@ (@ tptp.dest tptp.paris) V)) (not (@ (@ tptp.class tptp.second) V)))) _let_91))))))) (let ((_let_93 (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_10 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_11 QUANTIFIERS_INST_E_MATCHING ((not (= (ho_4 (ho_6 k_5 W) V) false)))))) (let ((_let_94 (or _let_49 _let_47))) (let ((_let_95 (forall ((W $$unsorted) (V $$unsorted)) (or (not (ho_4 (ho_6 k_5 W) V)) (ho_4 (ho_3 k_8 tptp.paris) V))))) (let ((_let_96 (EQ_RESOLVE (ASSUME :args (_let_6)) (TRANS (MACRO_SR_EQ_INTRO _let_86 :args (_let_6 SB_DEFAULT SBA_FIXPOINT)) (PREPROCESS :args ((= (forall ((W $$unsorted) (V $$unsorted)) (or (not (@ (@ tptp.rel_s4 W) V)) (@ (@ tptp.dest tptp.paris) V))) _let_95))))))) (let ((_let_97 (or _let_49 _let_45))) (let ((_let_98 (forall ((W $$unsorted) (V $$unsorted)) (or (not (ho_4 (ho_6 k_5 W) V)) (ho_4 (ho_3 k_7 tptp.second) V))))) (let ((_let_99 (EQ_RESOLVE (ASSUME :args (_let_4)) (TRANS (MACRO_SR_EQ_INTRO _let_86 :args (_let_4 SB_DEFAULT SBA_FIXPOINT)) (PREPROCESS :args ((= (forall ((W $$unsorted) (V $$unsorted)) (or (not (@ (@ tptp.rel_s4 W) V)) (@ (@ tptp.class tptp.second) V))) _let_98))))))) (SCOPE (SCOPE (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_50)) :args ((or _let_49 _let_44 _let_48 _let_46 (not _let_50)))) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_97)) :args ((or _let_49 _let_45 (not _let_97)))) _let_90 (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_99 :args _let_93) :args (_let_98))) _let_99 :args (_let_97 false _let_98)) :args (_let_45 false _let_43 false _let_97)) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_94)) :args ((or _let_49 _let_47 (not _let_94)))) _let_90 (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_96 :args _let_93) :args (_let_95))) _let_96 :args (_let_94 false _let_95)) :args (_let_47 false _let_43 false _let_94)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_92 :args _let_93) :args (_let_91))) _let_92 :args (_let_50 false _let_91)) (MACRO_RESOLUTION_TRUST (CNF_OR_NEG :args (_let_51 1)) _let_89 :args ((not _let_44) true _let_51)) _let_90 :args (false false _let_45 false _let_47 false _let_50 true _let_44 false _let_43)) :args (_let_42 _let_41 _let_40 _let_39 _let_38 _let_37 _let_36 _let_35 _let_34 _let_33 _let_32 _let_31 _let_30 (forall ((V $$unsorted)) (exists ((X tptp.mu)) (@ (@ tptp.exists_in_world X) V))) _let_29 _let_28 _let_27 _let_26 _let_25 _let_24 _let_23 _let_22 _let_21 _let_20 _let_19 _let_18 _let_17 _let_16 _let_15 _let_14 _let_13 _let_12 _let_11 (@ tptp.mreflexive tptp.rel_s4) (@ tptp.mtransitive tptp.rel_s4) (forall ((X tptp.mu) (V $$unsorted) (W $$unsorted)) (let ((_let_1 (@ tptp.exists_in_world X))) (=> (and (@ _let_1 V) (@ (@ tptp.rel_s4 V) W)) (@ _let_1 W)))) (forall ((V $$unsorted)) (@ (@ tptp.exists_in_world tptp.first) V)) (forall ((V $$unsorted)) (@ (@ tptp.exists_in_world tptp.ninetyfive) V)) (forall ((V $$unsorted)) (@ (@ tptp.exists_in_world tptp.paris) V)) (forall ((V $$unsorted)) (@ (@ tptp.exists_in_world tptp.second) V)) (forall ((V $$unsorted)) (@ (@ tptp.exists_in_world tptp.seventy) V)) (@ tptp.mvalid (@ tptp.mbox_s4 (@ (@ tptp.mimplies (@ _let_9 _let_8)) _let_7))) _let_10 (@ tptp.mvalid (@ tptp.mbox_s4 (@ tptp.mnot (@ (@ tptp.mand _let_8) _let_3)))) (@ tptp.mvalid (@ tptp.mbox_s4 (@ tptp.mnot (@ (@ tptp.mand _let_7) _let_1)))) _let_6 _let_4 _let_2 true))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
% 0.21/0.58  )
% 0.21/0.58  % SZS output end Proof for NLP264^7
% 0.21/0.58  % cvc5---1.0.5 exiting
% 0.21/0.58  % cvc5---1.0.5 exiting
%------------------------------------------------------------------------------